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Supplementary Text: Spatially diverse landmark genes improve Seurat’s mapping 

To assess Seurat’s sensitivity to the number and type of landmark genes composing our spatial 

reference map, we downsampled the number of landmark genes used as input to Seurat and 

performed a spatial power analysis. The achievable resolution of spatial mapping (i.e., the 

number of bins that can be reliably defined) will depend on the number of spatially unique 

combinations of landmark gene expression. Thus, we reasoned that a smaller number of 

landmark genes spanning a diverse range of expression patterns would outperform a larger 

number of landmark genes with overlapping or redundant patterns. For each downsampling, we 

first selected random sets of 2, 4, 6, or all 9 archetypal groups, then sampled 2–45 landmark 

genes evenly across the selected archetypes, and used them to construct a reduced spatial 

reference map.  We then repeated Seurat’s mapping on each reduced spatial reference map and 

compared both the resulting cell mappings (as Euclidean centroid distance) and confidences (as 

overall shift in posterior probability) to those obtained using the full reference map (generated 

with 46 of the 47 landmark genes that met our variability requirements for inclusion in the 

archetypal clustering).  

We obtained similar mappings from a reduced number of landmark genes, with quality affected 

by their number and spatial diversity. For example, even with reference maps from certain 

subsets of only 16 landmark genes, Seurat’s cell mappings shifted by less than one bin on 

average, with this distance dropping to approximately half a bin and beginning to saturate after 

including 29 landmark genes (Supplementary Fig. 7a). However, this result held only if our 
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genes were evenly sampled across all nine archetypes: we observed larger shifts when the 

reference map was constructed from the same number of landmark genes, but sampled from a 

smaller number of archetypes. Thus, spatial diversity in our landmarks provides the greatest 

benefit to Seurat’s mapping. Nevertheless, increasing the number of landmarks, even if they have 

overlapping expression patterns, does continue to improve Seurat’s confidence in the resulting 

mappings (Supplementary Fig. 7b). To further investigate the effect of redundant landmarks, 

we considered the contribution of 2 sets of 4 landmark genes with identical expression patterns, 

in a reference map that we collapsed to the three bins that were defined by these landmarks. We 

found that 2X redundancy (i.e. two genes with overlapping expression) improves Seurat’s 

mapping, but increased redundancy led to diminishing returns (Supplementary Fig. 7c). 
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Supplementary Figure 1: Variability in published in situ images. 

!  

Cartoon representations of four published in situ images for chd (Gerdes et al., 2007 Fig. 5c; Sidi 
et al., 2003 Fig. 2D; Gilardelli et al., 2004 Fig. 5D; Maegawa et al., 2006 Fig. 5B) and cartoon 
representations of three published in situ images for gsc (Tian et. al, 2008 Fig. 1B; Thisse & 
Thisse, 2004; Du  et al., 2012 Fig. 9A), identified as 50% epiboly in their publications and part 
of our landmark data set (references in Supplementary Table 1). Scoring grids used to 
determine the spatial extent of gene expression are superimposed on top in green, with pink lines 
demarcating our interpretation of the extent of gene expression around the circumference as 
determined from the staining. For many genes, such as gsc, patterns are highly reproduced 
between studies—for all three images we would interpret as staining 1 bin. However, other 
genes, such as chd, show high variability, likely due to differences in embryo staging, extent of 
stain development, and imaging conditions. For chd, from the cited images, we would score its 
expression as occupying 2, 3, 4, or 5 bins (from left to right). 
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Supplementary Figure 2: Removal of EVL cells. 

!  

A single layer of enveloping layer (EVL) cells ubiquitously covers the outside of the embryo, but 
these cells do not express the same group of genes used to construct our spatial map. Thus, we 
exclude them from the study. The cells were identified primarily based on their strong loadings 
for the second principal component, which was defined by canonical markers of the EVL (e.g. 
krt18, krt4, cldne). We chose to select a restrictive cutoff to minimize the potential contribution 
of EVL cells to our dataset. 
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Supplementary Figure 3: Mapping confidence. 

!  

Seurat probabilistically assigns cells to one or more bins by determining a posterior probability 
that a cell originated from each of 64 bins in our model. As a measure of how confidently cells 
were mapped, histograms of the posterior probability of the most likely bin (left) or the sum of 
the two most likely bins (right) for each cell are displayed. Seurat mapped the majority of cells 
to one or two bins with high confidence (p>0.9), (24% for a single bin, 59% for two bins, which 
are typically adjacent).  
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Supplementary Figure 4: Spatial prediction clustering and archetype prediction. 

!  

The predicted spatial pattern was determined from the imputed expression values for the 290 
spatially variable genes in the data set (Methods). The clustered matrix has genes as rows, and 
each of the 64 bins as columns. We used k-means clustering to cluster genes into 9 clusters of 
‘archetypal’ expression patterns, using hierarchical clustering to group the columns for 
visualization. The averaged expression pattern of all genes in each archetype are displayed to the 
left. The archetypes are: restricted margin (RM), ventral margin (VM), dorsally enriched margin 
(DEM), dorsally restricted margin (DRM), extended margin (EM), ventral (V), dorsal animal 
(DA), ventral animal (VA), animal (A). 
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Supplementary Figure 5: Additional in situ patterns for Figure 4. 

!  

Five additional in situs for which there was no published 50% epiboly pattern (assessed Sep 4, 
2014). Top to bottom: Seurat’s predicted expression pattern, lateral view (dorsal to the right), 
animal cap view (dorsal to the right). Scale bar represents 100 µm. 

arl4ab cpn1 insm1b pkdcca prdm12b
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Supplementary Figure 6: Spatially diverse landmark genes improve Seurat’s mapping 
power. 

!  

(a, b) Spatial mapping power analysis. Shown are the mean change in centroid positions (Y axis, 
a) and the percentage change in posterior probabilities (Y axis, b) of cells mapped by Seurat 
when using a reference map from 500 limited subsets of landmark genes. To generate the limited 
subsets, first, 2 (orange), 4 (green), 6 (blue), or 9 (purple) archetypes were randomly chosen, 
and then 2–45 landmark genes (X axis) were randomly chosen evenly across those archetypes. 
The cells were then remapped with the reference map based on the landmark subset. (c) 
Contribution of redundant landmark patterns. We generated a reduced resolution reference map, 
based on partitioning the embryo into only 3 bins (left: white, blue, and green). We then 
selected sets of landmark genes with identical expression patterns that defined these bins—4 
landmark genes that had the expression pattern of the blue bin, and 4 that had the expression 
pattern of the blue + green bins. We then mapped cells within these 3 bins using a reference map 
with the full set of landmarks, or with every possible combination of 1, 2, 3, or 4 of the 
landmarks from each of the two redundant expression patterns. Shown are the percent of 
posterior probabilities recovered (Y axis) at each number of markers per bin (X axis), as 
compared to the full set of landmarks. Inclusion of two landmark genes with redundant patterns 
provides greater accuracy than inclusion of only one, but additional redundancy provides only 
diminishing returns.  
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Supplementary Figure 7: Identification of rare subpopulations. 

!  

(a) Two unsupervised analyses (PCA analysis, k-means) both identify known  subpopulations 
near the margin. The prechordal plate progenitors (green) and endodermal progenitors (blue) as 
identified by k-means clustering separate well based on principal components 2 and 3, 
respectively. (b) k-means clustering identification of the endodermal progenitors (blue) and 
prechordal plate progenitors (green). Classical markers of these populations were used to 
confirm the biologically identify of these clusters, and are displayed to the left and right of the 
heatmap. (c) Endodermal progenitors (blue) and prechordal plate progenitors (green) identified 
by k-means clustering would also have largely been identified via gating approaches based on 
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Spatial reconstruction of single-cell gene expression: Supplementary Information

classical markers of the endodermal progenitors (sox32 and gata5, left) and prechordal plate 
progenitors (gsc and frzb, right). (d) Identification via a supervised gating approach of a 
primordial germ cell (PGC) based on its classical markers, nanos3, ddx4/vasa, and dnd1. (e) 
Seurat correctly maps the identified PGC near the embryonic margin. (f) Identification of the 
‘apoptotic-like’ cell population (magenta) by thresholding along principal component 4.  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Spatial reconstruction of single-cell gene expression: Supplementary Information

Supplementary Table 1 
Landmark genes and references to the images used in this study 

Landmark Gene Published in situ images used to generate spatial map

admp (Bennett et al. 2007) Fig. S1, (Lele et al. 2001) Fig. 1

aplnrb (Scott et al. 2007) Fig. 3B, (Pauli et al. 2014) Fig. S17A

axin2 (B. Thisse & C. Thisse 2004)

bambia (Bennett et al. 2007) Fig. S1

bmp2b (Okuda et al. 2010) Fig. 4b, (Yimlamai et al. 2005) Fig. 7D, (Gilardelli et al. 2004) Fig. 
5J, (Sidi et al. 2003) Fig. 2A, (B. Thisse et al. 2001)

bmp4 (Zon et al. 1997) Fig. 6C, (Sidi et al. 2003) Figs. 2B, 2J, (B. Thisse & C. Thisse 2005)

bmp7a (Okuda et al. 2010) Fig. 4e, (Jurynec & Grunwald 2010) Fig. 3C

cdx4 (B. Thisse et al. 2001), (Ramel et al. 2005) Fig. 4S, (Davidson et al. 2003) Fig. 2d, (Lin et 
al. 2007) Fig. 4G

chd (Sidi et al. 2003) Fig. 2D, (Aamar & Dawid 2010) Fig. 3A, (Maegawa et al. 2006) Fig. 
5B, (Wilm & Solnica-Krezel 2005) Fig. 4K, (Gilardelli et al. 2004) Fig. 5D, (Okuda et al. 
2010) Fig. 4l, (Flores et al. 2008) Fig. 2d

cst3 (Bennett et al. 2007) Fig. S1

eve1 (Hammerschmidt et al. 1996) Fig. 2B, (Lyman Gingerich et al. 2005) Fig. 2e, (Fukazawa 
et al. 2010) Fig. 1K, (Fisher et al. 1997) Fig. 5E

fgf8a (Koshida et al. 2002) Fig. 3C, (Walshe et al. 2002) Fig. 1B, (Fürthauer et al. 1997) Fig. 
2B–C

foxb1a (B. Thisse et al. 2001), (Jurynec & Grunwald 2010) Fig. 3I, 3K, 

foxd3 (Wang et al. 2011) Fig. 3D, 3G

foxd5 (Bennett et al. 2007) Fig. S1

foxi1 (Dee et al. 2007) Fig. 1A, (Jia et al. 2012) Fig. 3A, (Xie et al. 2011) Fig. 6A5

gata2a (Dee et al. 2007) Fig. 1A, (Mei et al. 2009) Fig. 5C

gata5 (Reiter et al. 2001) Fig. 2A, (Warga & Kane 2003) Fig. 5I, (Aoki et al. 2002) Fig. 1J

gsc (Flores et al. 2008) Fig. 2e, (Tian et al. 2008) Fig. 1B, (Du et al. 2012) Fig. 9A, (B. Thisse 
& C. Thisse 2004), (Inbal et al. 2006) Fig. 1b

her1 (Bennett et al. 2007) Fig. S1, (B. Thisse & C. Thisse 2005)

hes6 (Bennett et al. 2007) Fig. S1, (Kawamura et al. 2005) Fig. 1A

id3 (Li et al. 2010) Fig. 1A

ism1 (Bennett et al. 2007) Fig. S1

lft1 Katherine Rogers, unpublished data

lft2 Katherine Rogers, unpublished data

lhx1a (Toyama & Dawid 1997), Fig. 2A–B
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Aamar, E. & Dawid, I.B., 2010. sox17 and chordin are required for formation of Kupffer's vesicle and 
left-right asymmetry determination in zebrafish. Developmental Dynamics, 239(11), pp. 2980–2988. 

Aoki, T.O. et al., 2002. Molecular integration of casanova in the Nodal signalling pathway controlling 
endoderm formation. Development, 129(2), pp. 275–286. 

Bennett, J.T. et al., 2007. Nodal signaling activates differentiation genes during zebrafish gastrulation. 
Developmental biology, 304(2), pp. 525–540. 

Dal-Pra, S. et al., 2006. Noggin1 and Follistatin-like2 function redundantly to Chordin to antagonize BMP 
activity. Developmental biology, 298(2), pp. 514–526. 

Dal-Pra, S., Thisse, C. & Thisse, B., 2011. FoxA transcription factors are essential for the development of 

mixl1 (mixer) (Aoki et al. 2002) Fig. 1I, (Kunwar et al. 2003) Fig. 1C

ndr1 (sqt) Katherine Rogers, unpublished data

ndr2 (cyc) Katherine Rogers, unpublished data

nog1 (Dal-Pra et al. 2011) Fig. 2B

noto (flh) Katherine Rogers, unpublished data, (Gilardelli et al. 2004) Fig. 5G, (Tian et al. 2003) Fig. 
8A

osr1 (Mudumana et al. 2008) Fig. 1C

otx1a (Bennett et al. 2007) Fig. S1

otx1b (Bennett et al. 2007) Fig. S1

sebox (Tseng et al. 2011) Fig. 4D-1

snai1a (B. Thisse et al. 2001), (Zhao et al. 2003) Fig. 6A

sox3 (Kudoh et al. 2004) Fig. 1A

sp5l (Zhao et al. 2003) Figs. 2D & H

szl (Wilm & Solnica-Krezel 2005) Figs. 4M & 6E, (Dal-Pra et al. 2006) Fig. 1G, (Wu et al. 
2012) Fig. 4Ba

ta (ntl) (Bennett et al. 2007) Fig. S1, (Du et al. 2012) Fig. 9C”

tbx16 (spt) (He et al. 2014) Figs. 5H & H’

tph1b (Bennett et al. 2007) Fig. S1

ved (B. Thisse et al. 2001), (Gilardelli et al. 2004) Fig. 2J, (Kapp et al. 2013) Fig. 4G

vent (Gilardelli et al. 2004) Fig. 2L, (Kawahara et al. 2000) Fig. G, (Reim & Brand 2006) Fig. 
3E, (Krens et al. 2008) Fig. 10J

vox (Gilardelli et al. 2004) Fig. 2K, (Reim & Brand 2006) Fig. 3D, (Krens et al. 2008) Fig. 
10G, (Shimizu et al. 2005) Fig. 2Ba, (Kapp et al. 2013) Fig. 4E, (He et al. 2014) Fig. 6J

wnt8a (Wilm & Solnica-Krezel 2005) Fig. 5C, (Xie et al. 2011) Fig. 6B1, (Yao et al. 2010) Fig. 
5D

wnt11 (Seo et al. 2010) Fig. 6A
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dorsal axial structures. Developmental biology, 350(2), pp. 484–495. 

Davidson, A.J. et al., 2003. cdx4 mutants fail to specify blood progenitors and can be rescued by multiple 
hox genes. Nature, 425(6955), pp. 300–306. 

Dee, C.T. et al., 2007. A change in response to Bmp signalling precedes ectodermal fate choice. The 
International journal of developmental biology, 51(1), pp. 79–84. 

Du, S. et al., 2012. Differential regulation of epiboly initiation and progression by zebrafish 
Eomesodermin A. Developmental biology, 362(1), pp. 11–23. 

Fisher, S., Amacher, S.L. & Halpern, M.E., 1997. Loss of cerebum function ventralizes the zebrafish 
embryo. Development, 124(7), pp. 1301–1311. 

Flores, M.V.C. et al., 2008. Osteogenic transcription factor Runx2 is a maternal determinant of 
dorsoventral patterning in zebrafish. Nature cell biology, 10(3), pp. 346–352. 

Fukazawa, C. et al., 2010. poky/chuk/ikk1 is required for differentiation of the zebrafish embryonic 
epidermis. Developmental biology, 346(2), pp. 272–283. 

Fürthauer, M., Thisse, C. & Thisse, B., 1997. A role for FGF-8 in the dorsoventral patterning of the 
zebrafish gastrula. Development, 124(21), pp. 4253–4264. 
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SUPPLEMENTARY TABLE 2
Generation of in situ probes

Gene Forward Primer Reverse Primer Linearize Polymerase

aplnrb BamHI T3

arl4ab attggactgtgccggtaaga aacatttgtgcgttccccaa NotI T3

casp8 acaattggccgcattgactt gtcggtaggagaggtagtgc NotI G3

cpn1 catttacagcatcggtcgca tgtaggtacccggcaaaagt NotI T3

dusp4 actgcagcgttttgaagagg gaaacgcgcccttactagtg EcoRV T7

ets2 Acc65I SP6

gadd45aa gacagccagagaaagaacacc ggtgctcacttccattcaca NotI T3

id2a gcgaacagggaatctcgaac aacactttgcagataccggc NotI T3

igf2a gaggaatgctgctttcggag tgggcctacttgattgcaga EcoRV T7

insm1b gccagtcagcaaggatcatg cttcagcaggcgttacgtac EcoRV T7

irx7 cttcatcaacggggtttgca acaggagagtacgagtccct NotI T3

isg15 tcatcacagttgttggcaca acatcacggcattgaaaacac EcoRV T7

nrarpa tgcagaacatgaccaactgc atcggttgctttctccagga NotI T3

pkdcca aatggacctggagcaacgta actctgttttgtgcatgcgt NotI T3

prdm12b gttcggctcatcatgggttc gtggtgcttgatcccaatgg Acc65I T7

prickle1b tgacatgtattgggcccagt aactttgggatcggggctta NotI T3

ripply1 gttttctcaccctcacgctg gcgatgcggtgttcaatgtta NotI T3

slc25a33 gttttccaggttcagctggg tggtcagactcccaaatgct NotI T3

tbr1b ccatgtttccctacccgagt gcaaagtccagtcggttgtt NotI T3

tcf3b gtggatggaggtggtcaaga ccattgacgtctgctccatg NotI T3

tp53inp1 tggttcatcactcctccacc agaatcacaggcaggttcca EcoRV T7
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Seurat 
Rahul Satija and Jeffrey Farrell 
rahuls@broadinstitute.org and jfarrell@g.harvard.edu 
 
Installation: 
Extract all files from this package to a single directory. 
 
Requirements: 
(1) A working installation of R (http://cran.r-project.org/) and RStudio 
(http://www.rstudio.com/) with R Markdown installed (RStudio will offer to install this 
for you). 
 
(2) The following packages are required by Seurat (and can be installed from RStudio 
using the install.packages command): vioplot, reshape2, XLConnect, lars, mixtools, 
NMF, gplots, reshape, Hmisc, ggplot, ROCR, gdata, and rgl. 
 
(3) For Seurat_AnalyzePopulations_D, a working installation of X11 is required. This is 
absolutely critical, as an attempt to load the rgl package without X11 installed does not 
fail gracefully and will crash R. On Macs, we recommend the XQuartz package 
(http://xquartz.macosforge.org/). 
 
Use: 
The R Markdown files reproduce most of the computation analysis described in the 
manuscript. They are a series of 4 modular files that save their computed output as R 
objects that are loaded in by the next module. This allows users to experiment with each 
module without having to run the (computationally intensive) analysis from scratch each 
time. The files have been knit into PDFs that show the output of running each module. 
The parts perform the following analyses: 
 

(1) Load in and normalize expression data, identify EVL cells 
(2) PCA analysis to identify variable and structured genes, building models of 

gene expression to alleviate technical noise 
(3) Probabilistic inference of spatial origin : fitting Gaussian mixture models, 

additional quantitative refinement, and cell projection. 
(4) Guided dataset analysis. Inference of in silico in situ patterns generated from 

the projected cells for both known and novel spatial markers, combining 
unsupervised analyses with Seurat to identify and localize rare populations. 
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Seurat - Load in Data and Identify
EVL
Rahul Satija and Jeff Farrell
September 8, 2014
Set basic options and load requirements Note the following package requirements:
vioplot,reshape2,XLConnect,lars,mixtools,NMF,gplots,reshape,Hmisc,ggplot2,ROCR

Load-in and normalize data

filesToLoad=c("~/seurat/data/zfish_umi_counts.Robj")
for(loadFile in filesToLoad) load(loadFile)

zdata.norm.slim=log(sweep(zdata,2,colSums(zdata),"/")*2e5+1)
zdata.norm.slim=minusr(zdata.norm.slim,"SI:|ORF|^CU|^ZGC|^BX");

zf.all=seurat(raw.data=zdata.norm.slim,stat.fxn=getStat1,is.expr=0.01) 
zf.all=setup(zf.all,project="Seurat",min.cells = 3,min.genes = 2000,calc.noise=FALSE,is.exp
r=0.01,do.scale = TRUE) #take all genes in > 3 cells, all cells with > 2k genes

Identify variable genes across the single cells

zf.all=mean.var.plot(zf.all,y.cutoff = 2,do.plot=TRUE,x.low.cutoff=0.25,x.high.cutoff=7,fxn
.x = expMean,fxn.y=logVarDivMean,set.var.genes = TRUE)
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markers.remove=batch.gene(zf.all,stats.use = c("zf1","zf2","zf3"),genes.use=zf.all@var.gene
s,auc.cutoff = 0.7)
zf.all@var.genes=zf.all@var.genes[!(zf.all@var.genes%in%markers.remove)]

Run a PCA using only these variable genes, identify EVL cells

zf.all=pca(zf.all,do.print = FALSE)
zf.all=project.pca(zf.all, pcs.print = 2,genes.print = 8) 
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## [1] "PC1"
## [1] "SOX3"     "SOX19A"   "CXCR4B"   "ID1"      "ALCAMB"   "ZIC2B"   
## [7] "FAM212AA" "GLULB"   
## [1] ""
## [1] "OSR1"     "MIXL1"    "DKK1B"    "KIRREL3L" "ZIC2A"    "APLNRB"  
## [7] "GATA5"    "MESPAB"   "FLRT3"   
## [1] ""
## [1] ""
## [1] "PC2"
## [1] "KRT18"      "KRT4"       "WU:FB15G10" "KRT8"       "CEBPB"     
## [6] "WU:FB17F05" "KRT5"       "CLDNE"     
## [1] ""
## [1] "CXCR4B" "ZIC2B"  "ID1"    "SOX3"   "ALDOB"  "CXCR4A" "SOX19A" "ANP32A"
## [9] "DKC1"  
## [1] ""
## [1] ""

plot(zf.all@pca.rot[,1],zf.all@pca.rot[,2],pch=16,xlab="PC1",ylab="PC2")
x=seq(-0.2,0.2,.01)
lines(x,-x*0.5-0.04,lwd=2,lty=2,col="red")
evl.quant=zf.all@pca.rot[,1]+2*zf.all@pca.rot[,2]+0.08; names(evl.quant)=colnames(zf.all@da
ta)
not.evl=names(evl.quant[evl.quant>0])
is.evl=names(evl.quant[evl.quant<0])
points(zf.all@pca.rot[is.evl,1],zf.all@pca.rot[is.evl,2],pch=16,col="red")
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Save the data so we can move to the next RMD without having to Reload the data

save(zf.all,not.evl,is.evl,file="~/seurat/obj/output_A.Robj")
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Seurat_ImputeData_B
Rahul Satija and Jeff Farrell
September 8, 2014
Set basic options and load requirements Note the following package requirements:
vioplot,reshape2,XLConnect,lars,mixtools,NMF,gplots,reshape,Hmisc,ggplot2,ROCR

#loads zf object, not.evl, is.evl
filesToLoad=c("~/seurat/obj/output_A.Robj")

for(loadFile in filesToLoad) load(loadFile)

#remove the EVL cells by taking a subset of the data
zf <- subsetData(zf.all, "", cells.use=not.evl)

Identify genes to use for building gene expression models

#recalculate a set of variable genes
zf <- mean.var.plot(zf, y.cutoff = 2, do.plot=FALSE, x.low.cutoff=1, x.high.cutoff=7, fxn.x

 = expMean, fxn.y=logVarDivMean, set.var.genes = TRUE)

markers.remove=batch.gene(zf,stats.use = c("zf1","zf2","zf3"),genes.use=zf@var.genes,auc.cu

toff = 0.6)

zf@var.genes=zf@var.genes[!(zf@var.genes%in%markers.remove)]

#do PCA to identify 'structured' genes
#note that the PCA prints the 8 genes with the highest and lowest loadings for each PC
zf <- pca(zf, do.print = FALSE)

zf <- jackStraw(zf, num.replicate=1000, num.pc=4, prop.freq=0.025)

zf <- project.pca(zf, pcs.print = 4, genes.print = 8)
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## [1] "PC1"

## [1] "SOX3"     "SOX19A"   "CXCR4B"   "ID1"      "ZIC2B"    "ALDOB"   

## [7] "CITED4B"  "FAM212AA"

## [1] ""

## [1] "OSR1"     "MIXL1"    "GATA5"    "DKK1B"    "KIRREL3L" "APLNRB"  

## [7] "MESPAB"   "ZIC2A"    "FLRT3"   

## [1] ""

## [1] ""

## [1] "PC2"

## [1] "CHD"   "FRZB"  "GSC"   "ADMP"  "FOXA2" "OTX1A" "SIX3B" "FOXA3"

## [1] ""

## [1] "BAMBIA" "VED"    "VOX"    "EVE1"   "APOC1L" "VENT"   "WNT8A"  "WNT8-2"

## [9] "CDX4"  

## [1] ""

## [1] ""

## [1] "PC3"

## [1] "IRX7"   "OTX1A"  "SHISA2" "LFNG"   "FGFR4"  "RND1L"  "PITX2"  "LFT2"  

## [1] ""

## [1] "NOTO"    "FOXD5"   "ARL4AB"  "WNT11"   "TA"      "AMOTL2A" "ARG2"   

## [8] "HES6"    "DUSP6"  

## [1] ""

## [1] ""

## [1] "PC4"

## [1] "CXCR4A"   "DND1"     "SCRN2"    "SOX32"    "OTX1A"    "ATP6V1G1"

## [7] "OTX1B"    "GRA"     

## [1] ""

## [1] "ISG15"  "SESN3"  "PHLDA3" "CTSH"   "MAT2AL" "KRT18"  "FOXO3B" "PHLDA2"

## [9] "IGF2A" 

## [1] ""

## [1] ""

Build models of gene expression
Matrices of gene expression were generated from published in situ stainings, and saved in an Excel file
(which eases data entry). So, we import this data and add it to the Seurat object.
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# Load in the Excel file.
wb <- loadWorkbook("~/seurat/situ/Spatial_ReferenceMap.xlsx", create=FALSE); insitu.genes <

- getSheets(wb)

insitu.matrix <- data.frame(sapply(1:length(insitu.genes),function(x)as.numeric(as.matrix(w

b[x][2:9,2:9]))))

insitu.genes <- toupper(insitu.genes); colnames(insitu.matrix) <- (insitu.genes)

# Then, we store this information in the Seurat object.
zf@insitu.matrix=insitu.matrix[,insitu.genes]

Now build models for these insitu genes, and predict robust values

genes.sig <- pca.sig.genes(zf,pcs.use = c(1,2,3), pval.cut = 1e-2, use.full = TRUE)

lasso.genes.use=unique(c(genes.sig,zf@var.genes))

zf <- addImputedScore(zf, genes.use=lasso.genes.use,genes.fit=insitu.genes, do.print=FALSE,

 s.use=40, gram=FALSE)

##  [1] "ADMP"   "APLNRB" "AXIN2"  "BAMBIA" "BMP2B"  "BMP4"   "BMP7A" 

##  [8] "CDX4"   "CHD"    "CST3"   "EVE1"   "FGF8A"  "FOXB1A" "FOXD3" 

## [15] "FOXD5"  "FOXI1"  "GATA2A" "GATA5"  "GSC"    "HER1"   "HES6"  

## [22] "ID3"    "ISM1"   "LHX1A"  "LFT1"   "LFT2"   "MIXL1"  "NDR1"  

## [29] "NDR2"   "NOG1"   "NOTO"   "OSR1"   "OTX1A"  "OTX1B"  "SEBOX" 

## [36] "SNAI1A" "SOX3"   "SP5L"   "SZL"    "TA"     "TBX16"  "TPH1B" 

## [43] "VED"    "VENT"   "VOX"    "WNT8A"  "WNT11"

Demonstrate the benefit of imputation

#before imputation - MIXL1 and OSR1 should be tightly co-expressed (on the left)
par(mfrow=c(1,2))

genePlot(zf,"MIXL1","OSR1",col="black")

#after imputation (on the right)
genePlot(zf,"MIXL1","OSR1",use.imputed = TRUE,col="black")
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Save the data so we can move to the next RMD without having to Reload the data

save(zf,lasso.genes.use,file="~/seurat/obj/output_B.Robj")
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Seurat_InferOrigins_C
Rahul Satija and Jeff Farrell
September 8, 2014
Set basic options and load requirements Note the following package requirements:
vioplot,reshape2,XLConnect,lars,mixtools,NMF,gplots,reshape,Hmisc,ggplot2,ROCR

#loads zf object, not.evl, is.evl

filesToLoad=c("~/seurat/obj/output_B.Robj")

for(loadFile in filesToLoad) load(loadFile)

Mixture models

The in situ patterns that we use to provide geographical information are scored in a binary on/off format. In
order to translate the continuous RNAseq data into this form, we model it as mixtures of 2 normal
distributions that represent the on state and off state. We then use this to estimate whether each cell should
be considered on or off for each gene.

insitu.genes=colnames(zf@insitu.matrix)

for(i in rev(insitu.genes)) zf=fit.gene.k(zf,i,do.plot=FALSE,do.k = 2,start.pct=mean(zf@ins

itu.matrix[,i]),num.iter = 1)

#show an example mixture model

par(mfrow=c(2,2))

zf_temp=fit.gene.k(zf,"SOX3",do.plot=TRUE,do.k = 2,start.pct=mean(zf@insitu.matrix[,"SOX3"]

),num.iter = 1)

zf_temp=fit.gene.k(zf,"OSR1",do.plot=TRUE,do.k = 2,start.pct=mean(zf@insitu.matrix[,"OSR1"]

),num.iter = 1)

zf_temp=fit.gene.k(zf,"BAMBIA",do.plot=TRUE,do.k = 2,start.pct=mean(zf@insitu.matrix[,"BAMB

IA"]),num.iter = 1)

zf_temp=fit.gene.k(zf,"SEBOX",do.plot=TRUE,do.k = 2,start.pct=mean(zf@insitu.matrix[,"SEBOX

"]),num.iter = 1)
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# Project each cell into its proper location

zf <- initial.mapping(zf)

Now, do a quantitative refinement
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#first identify the genes to use for the refinement

num.pc=3; num.genes=3;

genes.high=as.vector(apply(zf@pca.x.full[,1:num.pc],2,function(x)rownames(zf@pca.x.full)[or

der(x)[1:num.genes]]))

genes.low=as.vector(apply(zf@pca.x.full[,1:num.pc],2,function(x)rownames(zf@pca.x.full)[ord

er(x,decreasing=TRUE)[1:num.genes]]))

genes.use=unique(c(genes.high,genes.low))

#impute values for these genes if needed

new.imputed=genes.use[!genes.use%in%rownames(zf@imputed)]

zf <- addImputedScore(zf, genes.use=lasso.genes.use,genes.fit=new.imputed, do.print=FALSE, 

s.use=40, gram=FALSE)

## [1] "SOX19A" "CXCR4B" "FRZB"   "IRX7"   "SHISA2" "ARL4AB"

#refine the mapping with quantitative models that also consider gene covariance

zf <- refined.mapping(zf,genes.use)

Save the data so we can move to the next RMD without having to Reload the data

save(zf,lasso.genes.use,file="~/seurat/obj/output_C.Robj")
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Seurat_AnalyzePopulations_D
Rahul Satija and Jeff Farrell
September 8, 2014
Set basic options and load requirements Note the following package requirements:
vioplot,reshape2,XLConnect,lars,mixtools,NMF,gplots,reshape,Hmisc,ggplot2,ROCR

FOR ALL 3D PLOTS WITH RGL, PLEASE MAKE SURE AN X11 client (i.e. Xquartz for Mac OS X) before
attempting to run this file!!

#loads zf object, not.evl, is.evl

filesToLoad=c("~/seurat/obj/output_C.Robj")

for(loadFile in filesToLoad) load(loadFile)

Draw inferred in situ patterns for a few
known genes
Note that in the manuscript, when drawing an in situ for a ‘landmark’ gene, we first removed the gene from
the spatial reference map (i.e., removed the column from zf@insitu.matrix (mailto:zf@insitu.matrix)), re-
mapped the cells, and then inferred an in situ pattern

zf.insitu.lateral(zf, "GSC",label=FALSE)

zf.insitu.lateral(zf, "SOX3",label=FALSE)

mailto:zf@insitu.matrix
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zf.insitu.lateral(zf, "VED",label=FALSE)

Draw inferred in situ patterns for a few new
genes
zf.insitu.lateral(zf, "RIPPLY1",label=FALSE)

zf.insitu.lateral(zf, "DUSP4",label=FALSE)
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zf.insitu.lateral(zf, "ETS2",label=FALSE)

Pull out the margin cells, and run a PCA only
on these cells
cell.centroids=data.frame(t(sapply(colnames(zf@data),function(x) exact.cell.centroid(zf@fin

al.prob[,x])))); colnames(cell.centroids)=c("bin.tier","bin.dv")

margin.cells=rownames(subset(cell.centroids,bin.tier>=5))

zf.margin=(subsetData(zf,cells.use = margin.cells))

zf.margin=pca(zf.margin,do.print = FALSE)

zf.margin <- jackStraw(zf.margin, num.replicate=1000, prop.freq=0.025)

zf.margin=project.pca(zf.margin,pcs.print = 3,genes.print = 8)



9/8/14, 5:52 PMSeurat_AnalyzePopulations_D

Page 4 of 12file:///Volumes/Data/Dropbox/seurat/Rmd/Seurat_AnalyzePopulations_D.html

## [1] "PC1"

## [1] "ID1"    "SOX3"   "SOX19A" "CXCR4B" "ZIC2B"  "FOXD5"  "ALDOB"  "ASB11" 

## [1] ""

## [1] "OSR1"     "GATA5"    "APLNRB"   "FSCN1A"   "SNAI1A"   "DKK1B"   

## [7] "PITX2"    "KIRREL3L" "ZIC2A"   

## [1] ""

## [1] ""

## [1] "PC2"

## [1] "CHD"   "GSC"   "FRZB"  "OTX1A" "NOG1"  "SIX3B" "FOXA2" "TBX1" 

## [1] ""

## [1] "VED"    "HES6"   "VOX"    "EVE1"   "BAMBIA" "WNT8A"  "WNT8-2" "TPBGL" 

## [9] "VENT"  

## [1] ""

## [1] ""

## [1] "PC3"

## [1] "SOX32"     "MARCKSL1B" "CXCR4A"    "FGFR4"     "RPL26"     "BAMBIA"   

## [7] "CPN1"      "FLOT2A"   

## [1] ""

## [1] "ARL4AB"       "WNT11"        "SEBOX"        "GADD45BA"    

## [5] "TA"           "MIXL1"        "MORC3B"       "LOC100536023"

## [9] "PRICKLE1B"   

## [1] ""

## [1] ""

zf.margin=doKMeans(zf.margin,pcs.use = c(1:3), pval.cut = 1e-3,k.num = 8,k.seed = 1,disp.cu

t = 2.5,do.k.col = TRUE,use.full = TRUE, k.col=7,rev.pc.order = FALSE,pc.row.order = 3,pc.c

ol.order = 3,do.plot=TRUE,print.genes=FALSE)
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endo.cells=cells.in.cluster(zf.margin,1)

plate.cells=cells.in.cluster(zf.margin,5)

zf.margin@data.stat[colnames(zf.margin@data)]=rep("All",ncol(zf.margin@data)); 

zf.margin@data.stat[margin.cells]="All margin cells"

zf.margin@data.stat[endo.cells]="Endoderm Progenitors"; zf.margin@data.stat[plate.cells]="P

rechordal Plate"; 

pop.cols=c("#999999","#1B75BB","#37B34A")

#plot PCA, coloring cells by their status/ID (stored in zf@data.stat)

pca.plot(zf.margin,1,2,pt.size = 3.5,cols.use = pop.cols); 
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pc.13=pca.plot(zf.margin,1,3,pt.size = 3.5,cols.use = pop.cols)
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#gene-gene plot, again, coloring cells by their stat/ID

genePlot(zf.margin,"GSC","FRZB",col.use=pop.cols)
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Draw violin plots of known and new markers

vlnPlot(zf.margin,c("GSC"),cols.use = pop.cols)
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vlnPlot(zf.margin,c("SOX32"),cols.use = pop.cols)
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Localize cellular populations
#prechordal plate

zf.cells.render(zf,plate.cells,do.rotate=FALSE,radius.use=0.0625,col.use="#37B34A",do.new=T

RUE)
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#endoderm progenitors

zf.cells.render(zf,endo.cells,do.rotate=FALSE,radius.use=0.0625,col.use="#1B75BB",do.new=TR

UE,label=FALSE)
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